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ABSTRACT

Network monitoring and measurement are important tasks for

operating large-scale cloud networks. Recently, the confluence of

programmable networking hardware and streaming algorithms has

given rise to a class of memory-efficient algorithms that can run

entirely in the switch data plane.

However, existing systems cannot support the notion of time, and

therefore are oblivious to data recency. Generally, capturing recent

events is essential for reasoning about the most relevant trends, and

the same holds for network monitoring. Recent data, whether for

SLA monitoring or attack detection, is more useful and actionable.

The key question we consider in this paper is how to perform time-

aware monitoring on commodity switches with programmable data

planes. Our contribution is a feasibility study that: a) identifies a

class of hardware-friendly algorithms for time-aware monitoring,

b) customizes their key operations to the P4 model, c) develops a

Tofino hardware prototype as concrete evidence, and d) obtains

promising early results on real-world datasets.
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1 INTRODUCTION

Understanding traffic trends in cloud networks is a common and

essential task. Traditionally, this was done via the use of Net-

flow records and SNMP counters, which needed aggressive down-

sampling in order to keep overhead low. The recent emergence of

programmable switches has enabled the adaptation of memory-

efficient streaming algorithms for a wide range of monitoring

tasks. For instance, algorithms like Bloom filters [6] and count-min

sketches [9] can support membership tests and counting estima-

tion, respectively; more advanced algorithms can also perform tasks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

SPIN ’20, August 14, 2020, Virtual Event, NY, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8041-6/20/08. . . $15.00
https://doi.org/10.1145/3405669.3405821

like heavy-hitter detection [30], super-spreader detection [34], and

change detection [28]. The resulting systems enable a set of power-

ful monitoring tasks by matching the right łlean algorithmsž [23]

with new capabilities of emerging network hardware.

Take count-min sketches (CMS) as a concrete example. Instead

of keeping a distinct counter per key (e.g., IP or flow), in which case

the memory requirement would grow linearly with the number of

keys, a count-min sketch uses a constant amount of memory to

keep count for all keys. Upon insertion, it applies a number of hash

functions to the key, and uses the hash outputs as indexes to the

sketch memory to increment the corresponding counters. Upon

query, it retrieves values from the same indexes and returns their

minimum. Theoretical results show that this can achieve high accu-

racy in terms of approximation; and the desired level of accuracy

can be increased by the amount of memory assigned to the sketch

or keeping the number of insertions low [9].

However, a notable gap is that most existing systems are oblivi-

ous to the passage of time. Consider the algorithm for count-min

sketchesÐnone of the update or query operations has any notion

of time. Indeed, many of these algorithms only support a uniform

level of (in)accuracy for all events, regardless of when they took

place. This means that, as time goes by, the sketches will suffer

from higher inaccuracy with more insertions [9]. One could apply

simple remedies such as periodically resetting the sketch or using

a very large memory, but these are essentially just workarounds.

Ideally, network monitoring should support time-awareness

as an intrinsic property. Moreover, the algorithm should also be

łhardware-friendlyž, implementable on commodity programmable

switches. To understand the challenges imposed by hardware con-

straints, consider a class of algorithms that instantiate a sketch

per time interval, allocate more memory to recent intervals, and

gradually move older data to smaller sketches [25]. While concep-

tually simple, this cannot be easily supported by programmable

switches. Copying data from one chunk of memory to another

requires loops, which goes beyond the P4 programming model.

Creating many sketches would also require a large number of inter-

dependent match/action tables, which is challenging to support

within a limited number of hardware stages.

Our contribution is a feasibility study that identifies suitable algo-

rithms for time-awaremonitoring, customizes them to the P4model,

and demonstrates a real hardware implementation. First, we iden-

tify a recent proposal from the streaming algorithms communityÐ

time-adaptive sketches [29]Ðas a promising candidate. This class

of algorithms are particularly attractive, because they keep the

sketch structures almost unchanged and rely on simple yet effec-

tive methods to be time-aware. The key idea is similar to Dolby

noise reduction [12, 32]: when inserting a key to the sketch, it in-

flates the update using a pre-emphasis function; when querying

from the sketch, it reverses the artificial inflation by applying a

de-emphasis function to restore the values. Therefore, older events

are gradually aged out over time, and recent events enjoy a higher



accuracy. Applying this technique to a CMS would result in time-

adaptive CMS; and similar enhancements apply to other types of

sketches. Building upon this starting point, we customize the algo-

rithms for programmable switches, by carefully choosing pre- and

de-emphasis functions, approximating floating point operations,

discretizing timestamps, and pre-computing in software certain

types of needed values. We have implemented a hardware Tofino

prototype, and conducted a set of evaluations using realistic traf-

fic workloads. We intend this feasibility study to promote more

discussions in the community on time-aware monitoring.

2 TIME-AWARE MONITORING

In this section, we provide an overview on sketch-based monitor-

ing, motivate the need for time-awareness, and introduce how we

leverage recent developments in time-adaptive sketching for this

goal.

2.1 Background: Sketches

Sketches are probabilistic data structures used in streaming algo-

rithms, which can provide accurate estimates on item frequency

in data streams. Compared to exact data structures, where mem-

ory consumption grows with the number of insertions, sketches

use constant memory at the cost of bounded amounts of inaccu-

racy. These properties have proven to be a good fit for network

monitoring, because network switches need to process high-speed,

high-volume packet streams with very limited switch memory.

+ count

+ count

+ count

+ count

h1(item)

h2(item)

......

hd(item)

(item, count)

W

d

Figure 1: An example count-min sketch (CMS).

Count-min sketch (CMS) [9] is one of the most popular variants,

and it can further serve as a building block for more advanced

monitoring. As shown in Figure 1, it is a two-dimensional data

structure consisting of d rows andw columns. Every row i in the

CMS has an array of counters, as well as a distinct hash function

hi . Across rows, the hash functions h1 − hd need to be pairwise

independent [8]. Insertion of an item k to the CMS would result

in d writesÐone write to each of these rows. Concretely, the CMS

would compute hi (k) for the i-th row, and use the hash value as

the index to increment the corresponding counter. Upon a query

on item k , the CMS uses the same set of hash functions to retrieve

d counters and return the minimum. Since the hash functions may

produce collisions, the CMS might suffer from over-counting. The

inaccuracy of the CMS, however, has strong theoretical bounds,

and it is typically low enough for many practical tasks [20, 27, 31].

Count-min sketches are particularly amenable to programmable

data plane implementations. They only require simple arithmetic

operations, CRC-based hash functions, and other operations that

can be easily supported in the P4model [7]; their memory-efficiency

also plays a key role in network monitoring [35]. Consider a moni-

toring task that keeps track of the size of each TCP flow. A naïve

implementation that keeps per-flow state would quickly grow be-

yond available switch memory, which is on the order of 10MB in

modern switches [26]. Using CMS, we could instead use megabytes

or even kilobytes of memory to approximate per-flow sizes with

high accuracy.

2.2 The need for time-awareness

However, most existing projects on sketch-based network monitor-

ing have a shared limitationÐthe monitoring tasks cannot capture

the elapse of time. As typical networks remain operational for a

long period of time, it is often important to understand the most re-

cent network condition instead of some aggregate statistics over all

past behaviors. For instance, consider pulsewave DDoS attacks [1],

where an adversary generates short-lived traffic bursts to disrupt

normal forwarding. Detectors that only rely on aggregate traffic

volume may fail to detect high-strength bursts as a distinguishing

feature. Similarly, many other low-rate DDoS attacks [18, 24] do

not have anomalous statistics in aggregate. These, in fact, are just

concrete instances of a more general patternÐas long as events

of interest may change quickly, reports on the most recent data

would be much more valuable than a simple aggregate [29]. Since

network conditions are highly dynamic, explicitly capturing time

properties would enable fundamentally newmonitoring capabilities

unavailable before.

One could design strawman solutions to approximate this task.

For instance, one basic solution is to use a vanilla CMS that is

completely unaware of time, but periodically dump its content

per interval. This alleviates the problem that the inaccuracy of

vanilla CMS increases with more insertions. However, this would

require continuous data collection from the switches to the con-

troller, which could become a bottleneck. For tasks that require

fine-grained intervals (e.g., to detect millisecond-level pulses [18]),

the overhead would be extremely high. A stronger strawman so-

lution would be to allocate sketches of different sizes, dedicating

larger sketches to more recent intervals [25]. When data becomes

older, it gets moved to smaller and smaller sketches; and query inac-

curacy would degrade over time. This approach, however, requires

copying chunks of memory from one sketch to anotherÐa task

that is challenging to implement without loops. Moreover, it simi-

larly cannot easily handle fine-grained intervals, as the number of

sketches (therefore match/action tables and required stages) would

quickly grow beyond what programmable switches can provide

(10ś20 stages). Therefore, supporting time-aware monitoring not

only requires identifying the most suitable algorithm, but also cus-

tomizing them to fit into the hardware constraints of programmable

data planes.

2.3 Candidate: Time-adaptive sketches

We believe that a recent proposal from the streaming algo-

rithms community is a promising starting basis: time-adaptive

sketches [29]. Different from the first strawman solution, time-

adaptive sketches support the notion of time explicitly. An oper-

ator, therefore, does not have to łwork aroundž the problem by

storing all data from all intervals. Also, unlike the second strawman

solution, time-adaptive sketches do not require keeping multiple

sketches for different intervals or moving data across sketches. The

same sketch data structure will naturally remember recent trends

with more accuracy.

The key idea of time-adaptive sketches is to leverage a technique

similar to Dolby noise reduction [12, 32]. Upon an insertion of
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Figure 2: Customizing time-adaptive sketches to programmable data planes.

an item with count c , we apply a pre-emphasis function, which

monotonically increases with larger timestamps, to the inserted

count; in effect, more recent insertions are artificially enlarged and

thus emphasized. Upon a query, we apply a de-emphasis functionÐ

the inverse of the previous pre-emphasisÐto restore the original

count. This algorithm provides theoretical guarantees on accuracy,

and its accuracy increases for more recent data.

Consider a time-adaptive version of CMS, which works as fol-

lows. Suppose that we would like to insert the count for f lowi at

time t , which we denote as f lowt
i . We multiply this count with

a pre-emphasis function f (t), and increment the corresponding

counters in the CMS using this enlarged value. When querying the

count for f lowi for time t , we retrieve the corresponding counters

from the CMS, compute the minimum, and apply a de-emphasis

function to this value. The only requirement for f (t) is that it needs

to be a monotonically increasing function with regard to t .

Algorithm 1: Time-adaptive count-min sketch [29]

Input: Any monotonically increasing f (t), t ≥ 0

w ← ⌈ eϵ ⌉

d ← loд e
δ

M ← d ×w array initialized to 0

Update f lowt
i :

for j = 1 to d do
M(j,hj (i, t)) ← M(j,hj (i, t)) + f (t) ∗ f lowt

i

end

Query f lowt
i :

�f lowt
i ←minj ∈1,2, ...,d

M (j,hj (i,t ))

f (t )

return �f lowt
i

2.4 Customizing to switch hardware

Customizing time-adaptive sketches to programmable data planes

requires several types of considerations, most of which revolve

around the pre- and de-emphasis functions. We discuss the feasibil-

ity requirements one by one.

Pre-emphasis vs. de-emphasis. Our first observation is that

insertions to the sketches are performed at a per-packet granularity,

but queries are only occasional. In terms of hardware support,

this means that the P4 data plane only needs to support the pre-

emphasis function. The de-emphasis function, on the other hand,

could reside in software (e.g., either at the switch control plane, or at

a central controller). The querier can process the (pre-emphasized)

counts from the hardware sketches, and then apply the de-emphasis

function as a postprocessing step.

Linear vs. exponential. Depending on the choice of pre-

emphasis functions, there are linear and exponential variants of

time-adaptive sketches. The first class of variants use some linear

function f (t) = a × t , and the second class of variants use some

exponential function f (t) = at ; in both cases, a is a pre-defined con-

stant for emphasis and de-emphasis. The common feature across

both choices is that measurements at larger (therefore more re-

cent) timestamps will be naturally emphasized more than those at

smaller (therefore more distant) timestamps. Since programmable

data planes do not support sophisticated operations such as ex-

ponentiation or multiplication, linear variants are more natural

candidates. Moreover, instead of supporting arbitrary a, we can re-

strict the choices to the powers of two. Then we can easily support

a × t using simple bitshifts in data plane.

Floating point numbers. Programmable data planes also lack

support for floating point numbers. Therefore, our design approxi-

mates these functions in today’s hardware by discretizing the times-

tamps. Instead of using wallclock timestamps, we use discrete logi-

cal steps that can be computed from the switch timer (e.g., one step

per millisecond or one million packets). Supporting exponential

functions at is more complex: we need to precompute at in advance

for a range of discrete steps, and install approximate values in a

match/action table; at runtime, insertions will first index this table

using t and retrieve at for the pre-emphasis.

Enhancing the existing time-adaptive sketches with the above

support allows us to arrive at a feasible hardware implementa-

tion. Figure 2 shows the high-level architecture of our design,

where the control plane runs in software, and the data plane is

P4-programmable hardware.

3 EMPIRICAL EVIDENCE

To demonstrate feasibility, we have implemented a time-adaptive

CMS in two versions of P4: a) a P4_16 version that runs in Mininet

v2.3.0; and b) a Tofino version that runs in hardware switches. Un-

less otherwise noted, we have used a = 1 for the linear function and
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Figure 3: Relative error rate over time for different sketches

on DCTCP and VL2; software implementation.
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Figure 4: Choice of parameters a in exponential time-

adaptive count-min sketch; software implementation.

a = 1.015 for the exponential function (for which we pre-compute

the values as match/action entries). For each set of results below,

we note whether they are obtained using hardware or software

versions. In addition, we have also obtained the ground truth by ana-

lyzing the packet traces using exact counting without sketch-based

approximation as further comparison.

We have downloaded the CAIDA Anonymized Internet Traces

2019 Dataset from an Equinix-NYC Internet router, using its first

6M TCP/UDP packets; and we have also used the DCTCP [2] and

VL2 [14] workloads, generating 2.5M and 13M packets, respectively.

We compare the performance of linear time-adaptive CMS, expo-

nential time-adaptive CMS, and the vanilla count-min sketch, using

the same amount of memory for each implementation. For the hard-

ware version, the discretization relies on wallclock timestamps (2

seconds per interval); for the software version, since the processing

speed is much slower and is not reflective of highspeed networks,

we use the number of packets processed as the logical intervals (12k-

30k packets per interval depending on the traces). We have adopted

two metrics from the original design of time-adaptive sketch [29].

The first metric is average absolute error, which is computed by

first obtaining the difference between a sketch estimate and the

ground truth (exact count) for the i-th interval, i.e., ĉi − ci , and

then computing an average across all intervals. The second metric

is relative error rate, which is computed by dividing the average

absolute error of the time-aware sketch by that of the vanilla CMS.

3.1 Performance comparisons

First, we compare the performance of time-adaptive CMS with the

vanilla version, using the DCTCP and VL2 datasets. We queried the

top-20 heavy hitters for each interval, and compared the results

with the ground truths.

As Figure 3 shows, across the two datasets, time-adaptive CMS

can consistently provide higher accuracy for recent trends. As

tradeoff, this comes at the cost of lower accuracy for historical

Table 1: Resource usage of a hardware Tofino switch

Vanilla Linear Exponential

Stages 6 8 7

VLIWs (%) 2.34 3.12 2.86

ALU (%) 10.42 10.42 10.42

SRAM (%) 8.65 8.65 8.96

data. For the most recent interval, time-adaptive CMS achieves

3-10 times higher accuracy than the vanilla version. Moreover, we

found that the exponential version achieves higher accuracy than

the linear version; this is because f (t) = at with a = 1.015 in-

creases faster than the linear function f (t) = t , therefore putting a

stronger emphasis on more recent data. As a third observation, the

pre-computed values for the exponential functionÐdespite accu-

racy loss due to conversion to integersÐhave enough precision to

achieve almost identical results with the łofflinež baseline, which

implements the exponential functions in software without precision

loss.

3.2 Choices of pre-emphasis functions

Our next set of experiments is designed to understand the choice of

pre- and de-emphasis functions. Figure 4 shows different values of

a for exponential functions. As we can see, a larger a in exponential

time-adaptive CMS would put a stronger emphasis (de-emphasis)

on more recent (older) data. This is because when we first compute

f (t0) = at0 , and then query the result by performing д(t1) =
1
at1

,

where t0 < t1, the overall difference factor is д(t1) × f (t0) = at0−t1.

For linear sketches, we have f (t0) = a × t0 and д(t1) =
1

a×t1
and

the difference is f (t0) × д(t1) = t0/t1; the coefficient a does not

contribute to the overall difference.

3.3 Memory vs. accuracy

Next, we have used the CAIDA dataset to evaluate the influence

of memory usage on the accuracy of time-aware monitoring. We

varied the sketch size from 64KB to 1MB, and ran top-50 heavy

hitter queries for all intervals. As Figure 5 shows, time-adaptive

CMS has higher accuracy at larger memory sizes, and it always

outperform vanilla sketches for recent intervals. As a closer view,

Figure 6 shows the results for the most recent 10 intervals: every

doubling of the memory usage would roughly cut the error rate

in half, which aligns with the theoretical proofs in [29]. This is

because vanilla CMS achieves higher accuracy with larger memory

for all intervals uniformly, but time-adaptive CMS leverages the

larger memory to achieve higher accuracy for recent data.

3.4 Hardware utilization

We have also measured the resource usage of vanilla CMS and the

time-aware variants. As shown in Table 1, time-aware sketches

only require 1ś2 more stages for implementing the timing features;

we note that the exponential variant uses one fewer stage, because

the coefficients are precomputed in advance. For VLIWs (Very Long

Instruction Words) and ALUs (Arithmetic Logic Units), which are

used for arithmetic operations, we also only see modest or no

increase. In terms of SRAM (static RAM), when the sketches have

216 entries and each entry has 4 bytes, vanilla CMS uses 8.65%
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Figure 5: Average absolute error over time for different sketches with various memory sizes; hardware implementation.
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implementation.

memory while linear and exponential time-aware versions use

8.65% and 8.96% respectively.

4 RELATED WORK

Recent work on programming data planes [5, 7, 10, 33] has devel-

oped a range of network monitoring and measurement tasks in

hardware [13, 16, 21, 22]. However, they do not support time-aware

monitoring tasks. Existing work on time-aware data structures has

used either sliding windows or their generalizations [4, 11, 15, 19],

or hierarchical approaches with one sketch per interval [25].

State-of-the-art sliding window approaches [3] and their gener-

alizations [15] require complex data structures that programmable

network hardware cannot easily support. For instance, [15] pro-

posed a set of powerful sliding window algorithms with L2 esti-

mation guarantees. However, it extensively used Exponential His-

togram which could not fit into programmable switches easily.

Hierarchical approaches, on the other hand, would also create mul-

tiple sketches of different sizes for different levels of accuracy, but

programmable data planes cannot easily support a large number of

sketches or migrating data across sketches.

Other work has considered using hardware-supported low-pass

filters (LPF) [17] or EWMA (Exponentially Weighted Moving Aver-

age) to support time-aware measurements. However, compared to

sketch-based network monitoring, these mechanisms only support

a single measurement key.

5 DISCUSSION

Handling overflow. Counter overflows are not unique to time-

aware monitoring. However, the pre-emphasis functions would

artificially enlarge counter values if we have a >> 1, so overflows

may become more frequent. One tentative solution is to augment

the time-aware sketches with auxiliary data structures that record

overflows. For instance, whenever a counter is larger than a thresh-

old, we right shift the current value by one bit, and record the num-

ber of bit shifts we have performed so far in an auxiliary counter.

This causes some accuracy loss, but only in the least significant

bit of each entry. When an entry needs to be updated, we first

apply a right-shift to the value to be added before updating the

entry. We plan to explore the feasibility of this design in a hardware

implementation in the future.

SmartNICs and FPGAs. We have mostly focused on leveraging

programmable switch hardware for time-aware monitoring, assum-

ing the P4 programming model. However, programmable hardware

in cloud networks exists in other forms, such as SmartNICs and

FPGAs at the end hosts. They also have significantly different re-

source characteristics (e.g., more abundant RAM, lower processing

speeds), and programming models (e.g., using a subset of C or

Verilog/VHDL). We would also like to explore these alternative

hardware platforms as future work.

6 SUMMARY

In this paper, we have presented a feasibility study on supporting

time-aware queries in network monitoring. We have identified a

class of algorithms called time-adaptive sketches to be a suitable

starting basis, and proposed a set of customizations to adapt these

algorithms to programmable data planes. We have developed soft-

ware and hardware prototypes, and performed an initial set of

experiments for validation. As next steps, we plan to investigate

supporting a wider range of sketches that can be supported by this

class of algorithms. We intend this paper to promote more discus-

sions in the community on time-aware cloud network monitoring.
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